Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal.
نویسندگان
چکیده
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
منابع مشابه
The global signal and observed anticorrelated resting state brain networks.
Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping the brain's intrinsic, large-scale functional architecture. An important data preprocessing step used to enhance the quality of these observations has been removal of spontaneous BOLD fluctuations common to the whole brain (the so-called g...
متن کاملNeuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.
Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregi...
متن کاملNeuronal correlate of BOLD signal fluctuations at rest: err on the side of the baseline.
F unctional MRI (fMRI) indirectly measures changes in neuronal activity because the blood oxygenation level-dependent (BOLD) signal is sensitive to changing concentrations of oxyhemoglobin (vs. deoxyhemoglobin) to support functional energy demand (1). Changes in the BOLD signal are usually interpreted from an unspecified baseline state (2). However, there is no true baseline because the brain i...
متن کامل176 Functional Mapping Using Infra-slow Gamma Band Fluctuations in Spontaneous Electrocorticography.
Introduction Resting state functional networks were defined using fMRI: correlations in BOLD signal persisted during stimulus-free activity, corresponded spatially with functional cortex, and were used to describe attentional systems such as the default mode network. Correlations in spontaneous, infra-slow (<0.1 Hz) fluctuations in gamma band (70-100 Hz) signal recorded using electricocorticogr...
متن کاملDynamic BOLD functional connectivity in humans and its electrophysiological correlates
Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 15 شماره
صفحات -
تاریخ انتشار 2013